首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2477篇
  免费   109篇
  国内免费   14篇
工业技术   2600篇
  2024年   3篇
  2023年   33篇
  2022年   34篇
  2021年   114篇
  2020年   78篇
  2019年   76篇
  2018年   113篇
  2017年   88篇
  2016年   97篇
  2015年   68篇
  2014年   89篇
  2013年   249篇
  2012年   173篇
  2011年   164篇
  2010年   118篇
  2009年   108篇
  2008年   96篇
  2007年   79篇
  2006年   75篇
  2005年   54篇
  2004年   48篇
  2003年   56篇
  2002年   45篇
  2001年   45篇
  2000年   48篇
  1999年   30篇
  1998年   67篇
  1997年   44篇
  1996年   35篇
  1995年   37篇
  1994年   20篇
  1993年   28篇
  1992年   7篇
  1991年   15篇
  1990年   13篇
  1989年   12篇
  1988年   22篇
  1987年   21篇
  1986年   15篇
  1985年   12篇
  1984年   15篇
  1983年   7篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   7篇
  1978年   4篇
  1976年   6篇
  1975年   6篇
  1970年   2篇
排序方式: 共有2600条查询结果,搜索用时 46 毫秒
101.
In this research, the mechanical, acoustical, thermal, morphological, and infrared spectral properties of untreated, heat and alkaline‐treated sisal fiber‐reinforced poly‐lactic‐acid bio‐composites were analyzed. The bio‐composite samples were fabricated using a hot press molding machine. The properties mentioned above were evaluated and compared with heat‐treated and alkaline‐treated sisal fibers. Composites with heat‐treated sisal fibers were found to exhibit the best mechanical properties. Thermo‐gravimetric analysis (TGA) was conducted to study the thermal degradation of the bio‐composite samples. It was discovered that the PLA‐sisal composites with optimal heat‐treated at 160°C and alkaline‐treated fibers possess good thermal stability as compared with untreated fiber. The results indicated that the composites prepared with 30wt % of sisal had the highest sound absorption as compared with other composites. Evidence of the successful reaction of sodium hydroxide and heat treatment of the sisal fibers was provided by the infrared spectrum and implied by decreased bands at certain wavenumbers. Observations based on scanning electron microscopy of the fracture surface of the composites showed the effect of alkaline and heat treatment on the fiber surface and improved fiber‐matrix adhesion. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42470.  相似文献   
102.
Two palladium(II) nitroaryl complexes trans-[bromo(p-nitrophenyl)bis(triphenylphosphine)palladium(II)] 1 and trans-[bromo(2,4-dinitrophenyl)bis(triphenylphosphine)palladium(II)] 2 have been synthesized. The complexes were characterized by FTIR and NMR (1H, 13C and 31P) spectroscopy and elemental analysis. The molecular structure of complex 2, as confirmed by X-ray crystallography, reveals that the Pd atom and its neighboring groups (two PPh3, Br and phenylene group) lie in a slightly distorted square plane. In the UV–Vis spectra of the complexes 1 and 2, the palladium to aryl charge transfer bands were observed. The emission peaks from the singlet excited states (S1  S0) were observed in the photoluminescence spectra of the complexes. The thermal stability of the complexes has been studied by thermal gravimetric analysis (TGA). TGA data showed that both complexes are thermally stable up to 200 °C, and complex 1 is more stable than 2. The catalytic efficiency of the new palladium(II) complexes was studied as demonstrated using the Sonogashira coupling reactions with good yields. The experimental results suggest that the Sonogashira coupling reactions can be performed at moderate temperature (50 °C) using these new palladium(II) complexes as catalysts.  相似文献   
103.
The objective of this study was to fabricate dual‐layer hollow fiber as a microreactor for potential syngas production via phase inversion‐based co‐extrusion/cosintering process. As the main challenge of phase inversion is the difficulty to obtain defect‐free fiber, this work focuses on the effect of the fabrication parameters, that is, nonsolvent content, sintering temperature and outer‐layer extrusion rate, on the macrostructure of the produced hollow fiber. SEM images confirm that the addition of nonsolvent has successfully minimized the finger‐like formation. At high sintering temperature, more dense hollow fiber was formed while outer‐layer extrusion rate affects the outer layer thickness.  相似文献   
104.
Dopamine (3,4-dihydroxylphenyl ethylamine) is the most significant neurotransmitter in the human nervous system. Abnormal dopamine levels cause fatal neurological disorders, and thus measuring dopamine level in actual samples is important. Although electrochemical methods have been developed for detecting dopamine with high accuracy, certain substances (e.g., ascorbic acid) in actual samples often interfere with electrochemical dopamine detection. We developed tyrosinase-based dopamine biosensor with high sensitivity and selectivity. An electrochemically pretreated tyrosinase/multi-walled carbon nanotube-modified glassy carbon electrode (tyrosinase/MWNT/GCE) was prepared as an amperometric biosensor for selective dopamine detection. For optimizing the biosensor performance, pH, temperature, and scan rate were investigated. The electrochemically pretreated tyrosinase/MWNT/GCE exhibited not only the highest sensitivity (1,323 mAM?1 cm?2) compared to previously reported tyrosinase-based dopamine sensors, but also good long-term stability, retaining 90% of initial activity after 30 days. Additionally, ascorbic acid, a major interfering substances, was not oxidized at the potential used to detect dopamine oxidation, and the interfering effect of 4mM ascorbic acid was negligible when monitoring 1mM dopamine. Consequently, the electrochemically pretreated tyrosinase/MWNT/GCE is applicable for highly selective and sensitive dopamine detection in actual samples including interfering substances, thereby extending the practical use to monitor and diagnose neurological disorders.  相似文献   
105.
Today’s lithium (Li)-ion batteries have been widely adopted as the power of choice for small electronic devices through to large power systems such as hybrid electric vehicles (HEVs) or electric vehicles (EVs). However, it falls short of meeting the demands of new markets in these areas of EVs or HEVs due to insufficient energy density. Therefore, new battery systems such as Li–air batteries with high theoretical specific energy are being intensively investigated, as this technology could potentially make long-range EVs widely affordable. So far, Li–air battery technology is still in its infancy and will require significant research efforts. This review provides a comprehensive overview of the fundamentals of Li–air batteries, with an emphasis on the recent progress of various elements, such as lithium metal anode, cathode, electrolytes, and catalysts. Firstly, it covers the various types of air cathode used, such as the air cathode based on carbon, the carbon nanotube-based cathode, and the graphene-based cathode. Secondly, different types of catalysts such as metal oxide- and composite-based catalysts, carbon- and graphene-based catalysts, and precious metal alloy-based catalysts are elaborated. The challenges and recent developments on electrolytes and lithium metal anode are then summarized. Finally, a summary of future research directions in the field of lithium air batteries is provided.  相似文献   
106.
A conventional free‐radical initiating process was used to prepare graft copolymers from acrylonitrile (AN) with corn‐cob cellulose with ceric ammonium nitrate (CAN) as an initiator. The optimum grafting was achieved with corn‐cob cellulose (anhydroglucose unit, AGU), mineral acid (H2SO4), CAN, and AN at concentrations of 0.133, 0.081, 0.0145, and 1.056 mol/L, respectively. Furthermore, the nitrile functional groups of the grafted copolymers were converted to amidoxime ligands with hydroxylamine under basic conditions of pH 11 with 4 h of stirring at 70°C. The purified acrylic polymer‐grafted cellulose and polyamidoxime ligand were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy analysis. The ligand showed an excellent copper binding capacity (4.14 mmol/g) with a faster rate of adsorption (average exchange rate = 7 min), and it showed a good adsorption capacity for other metal ions as well. The metal‐ion adsorption capacities of the ligand were pH‐dependent in the following order: Cu2+ > Co2+ > Mn2+ > Cr3+ > Fe3+ > Zn2+ > Ni2+. The metal‐ion removal efficiency was very high; up to 99% was removed from the aqueous media at a low concentration. These new polymeric chelating ligands could be used to remove aforementioned toxic metal ions from industrial wastewater. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40833.  相似文献   
107.
108.
The cationic monomer, N,N‐diallyl‐3‐(diethylphosphonato)propylammonium chloride, was cyclopolymerized in aqueous solutions using t‐butylhydroperoxide (TBHP) or ammonium persulfate (APS) as initiators to afford a cationic polyelectrolyte (CPE) having a (diethylphosphonato)propyl pendent. The CPE on acidic hydrolysis of the diester groups gave pH‐responsive polyzwitterionic acid (PZA) which on treatment with one and two equivalents NaOH gave zwitterionic/anionic polyelectrolyte (ZAPE) and dianionic polyelectrolyte (DAPE), respectively. The solution properties of the CPE, PZA, ZAPE, and DAPE were investigated in detail by viscometric technique. For the purpose of comparison, the solution properties of the polymers were correlated to a structurally similar polyzwitterion (PZ) having monoethylphosphonate and NH+ groups. When performance evaluation was carried out for application in reverse osmosis (RO) plants, DAPE at a concentration of 10 ppm in brackish water feed proved very effective as an inhibitor against calcium sulfate scale. POLYM. ENG. SCI., 54:166–174, 2014. © 2013 Society of Plastics Engineers  相似文献   
109.
Rare earth-doped ZnO hierarchical micro/nanospheres were prepared by a facile chemical precipitation method and characterized by X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible diffuse reflectance spectroscopy and photoluminescence spectroscopy. The results showed that the as-synthesized products were well-crystalline and accumulated by large amount of interleaving nanosheets. It was also observed that the rare earth doping increased the visible light absorption ability of the catalysts and red shift for rare earth-doped ZnO products appeared when compared to pure ZnO. The photocatalytic studies revealed that all the rare earth-doped ZnO products exhibited excellent photocatalytic degradation of phenol compared with the pure ZnO and commercial TiO2 under visible light irradiation. Nd-doped ZnO had the highest photocatalytic activity among all of the rare earth-doped ZnO products studied. The optimal Nd content was 2.0 at% under visible light irradiation. The enhanced photocatalytic performance of rare earth-doped ZnO products can be attributed to the increase in the rate of separation of photogenerated electron–hole pairs and hydroxyl radicals generation ability as evidenced by photoluminescence spectra.  相似文献   
110.
Poly(3′,4′‐ethylenedioxy‐2,2′:5′,2″‐terthiophene)/ZnO(poly(TET)/ZnO) composites with the ratio of poly(TET) and nano‐ZnO from 3:1 to 1:3 were synthesized by hand grinding and ball milling methods, respectively. The photocatalytic activities of the composites were examined through the degradation processes of methylene blue (MB) solution under UV light irradiation, and the possible mechanism for the photocatalytic activity enhancement by synergetic effects between nano‐ZnO and poly(TET) was proposed. The results showed that the strong interactions between the poly(TET) and nano‐ZnO occurred in the case of ball milling method. The results also proved that the crystallinity of ZnO was not disturbed in both of methods, and the nano‐ZnO was uniformly distributed in polymer matrix in the case of ball milling method. The comparative studies showed that the addition of the nano‐ZnO could enhance the photocatalytic activities of the composites. The highest degradation efficiency (100%) at 3 h under UV light irradiation occurred in the case of poly(TET)/ZnO(1:1) synthesized by ball milling method. Furthermore, the nanocompsosite displayed higher photocatalytic activity than nano‐ZnO, which was due to the holes (h+) transferring from the valence band of ZnO to the polymer backbone and the adsorption of MB molecules in polymer matrix via π–π conjugation between MB and aromatic regions of the poly(TET). POLYM. COMPOS., 36:1597–1605, 2015. © 2014 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号